

Functional Description

The ACTQ16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation. The following description applies to each byte. When the T/R input is HIGH, then Bus A data is transmitted to Bus B. When the T / \bar{R} input is LOW, Bus B data is transmitted to Bus A. The 3-STATE outputs are controlled by an Output Enable ($\overline{\mathrm{OE}}_{n}$) input for each byte. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW, the outputs are in 2-state mode. When $\overline{\mathrm{OE}}_{n}$ is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Truth Tables

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathbf{T} / \overline{\mathbf{R}}_{\mathbf{1}}$	
L	L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$
L	H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$
H	X	HIGH-Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$

Inputs		Outputs
$\overline{\mathbf{O E}}_{\mathbf{2}}$	$\mathbf{T} / \overline{\mathbf{R}}_{\mathbf{2}}$	
L	L	Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$ Data to Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$
L	H	Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$ Data to Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$
H	X	HIGH-Z State on $\mathrm{A}_{8}-\mathrm{A}_{15}, \mathrm{~B}_{8}-\mathrm{B}_{15}$

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance

Logic Diagram

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	
DC Input Diode Current (1/1)		Supply Voltage (V_{CC}) 4.5 V to 5.5 V
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	Output Voltage (V_{O}) OV to V_{CC}
DC Output Diode Current (lok)		Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$) $125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$	+20 mA	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
DC Output Voltage (V_{0})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC Output Source/Sink Current (Io)	$\pm 50 \mathrm{~mA}$	Note 1: Absolute maximum ratings are those values beyond which damage To the device may occur. The databock sevifications should be met with
DC $V_{C C}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$	to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	recommend operation of FACTw ${ }^{\text {m crcuits }}$ outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{VOH}}$	Minimum HIGH Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Maximum LOW Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \\ & \hline \end{aligned}$
lozt	Maximum I/O Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cc }}$, GND
${ }^{\text {CCT }}$	Maximum I ${ }_{\text {cC }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
ICC	Max Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND
IoLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
ІОНD	Output Current (Note 3)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.5	0.8		V	Figure 1, Figure 2 (Note 5)(Note 6)
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.5	-0.85		V	Figure 1, Figure 2 (Note 5)(Note 6)
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V	Figure 1, Figure 2 (Note 4)(Note 6)
$\mathrm{V}_{\mathrm{OHV}}$	Minimum V_{CC} Droop	5.0	$\mathrm{V}_{\mathrm{OH}}-1.0$	$\mathrm{V}_{\mathrm{OH}}-1.8$		V	Figure 1, Figure 2 (Note 4)(Note 6)
$\overline{\mathrm{V}} \mathrm{IHD}$	Minimum HIGH Dynamic Input Voltage Level	5.0	1.7	2.0		V	(Note 4)(Note 7)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Dynamic Input Voltage Level	5.0	1.2	0.8		V	(Note 4)(Note 7)

Note 2: All outputs loaded; thresholds associated with output under test.
Note 3: Maximum test duration 2.0 ms ; one output loaded at a time.
Note 4: Worst case package.
Note 5: Maximum number of outputs that can switch simultaneously is n. $(n-1)$ outputs are switched LOW and one output held LOW.
Note 6: Maximum number of outputs that can switch simultaneously is n. $(n-1)$ outputs are switched HIGH and one output held HIGH.
Note 7: Max number of data inputs (n) switching. ($n-1$) input switching $0 V$ to $3 V$ input under test switching $3 V$ to threshold ($V_{\text {ILD }}$)

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
tpLH	Propagation Delay	5.0	3.2	5.7	8.4	3.2	9.0	
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to B_{n}, A_{n}	5.0	2.6	5.1	7.9	2.6	8.4	ns
$t_{\text {Pzi }}$	Output Enable	5.0	3.7	6.4	9.4	2.7	10.0	
tpzL	Time	5.0	4.1	7.4	10.5	3.4	11.6	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable	5.0	2.2	5.4	8.7	2.2	9.3	ns
tplz	Time	5.0	2.0	5.2	8.2	2.0	8.8	ns

Extended AC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V) (Note 9)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 11)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 12) } \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & 3.5 \end{aligned}$		$\begin{gathered} 11.9 \\ 9.9 \end{gathered}$	$\begin{aligned} & 5.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14.6 \\ & 13.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 11.4 \\ & 12.2 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.1 \end{aligned}$		$\begin{aligned} & 9.3 \\ & 8.8 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 10)	Pin to Pin Skew HL Data to Output	5.0			1.2			ns
$\mathrm{t}_{\mathrm{OSLH}}$ (Note 10)	Pin to Pin Skew LH Data to Output	5.0			1.3			ns
$\mathrm{t}_{\mathrm{OST}}$ (Note 10)	Pin to Pin Skew LH/HL Data to Output	5.0			3.0			ns

Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Note 10: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSH}}$), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OS}} \mathrm{H}$), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (tost).
Note 11: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 12: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 13: 3-STATE delays are load dominated and have been excluded from the datasheet.
Note 14: The Output Disable Time is dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet

Capacitance

Symbol	Parameter	Typ	Units	
C_{IN}	Input Pin Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	25	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement.

$\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference.
Input pulses have the following characteristics: $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.

FIGURE 1. Quiet Output Noise Voltage Waveforms
5. Set the HFS generator input levels at OV LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for $A C$ devices. Verify levels with an oscilloscope.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $V_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed $\mathrm{V}_{\mathbb{I H}}$ limits. The input LOW voltage level at which oscillation occurs is defined as $V_{\text {ILD }}$.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed $V_{I H}$ limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
74ACTQ16245MTDX 74ACTQ16245SSCX 74ACTQ16245MTD 74ACTQ16245SSC 74ACTQ16245SSC_Q

